
NPS-CS-02-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Demonstration of Quality of Security Service
Awareness for IPsec

by

Evdoxia Spyropoulou, Timothy E. Levin, Cynthia E. Irvine

September 2002

Approved for public release; distribution is unlimited.

Prepared for: Defense Advanced Research Project Agency
Advanced Technology Organization

20021115 022

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM Admiral David R. Ellison R. Elster
Superintendent Provost

This report was prepared for and funded by the Naval Postgraduate School Center for
Information Systems Security (INFOSEC) Studies and Research (NPS CISR).

This report was prepared by:

Evdoxia Spyrp-ouiou T oy.e
Research Associate Research Ass iate Professor

CýPtia E. Irvine
Associate Professor

Reviewed by:

Neil C. Rowe
Professor
Department of Computer Science Released by:

Christpe aie D. W. Netzer 0ý
Department of Compu Science' Associate Provoet and

Dean of Research

Form approved
REPORT DOCUMENTATION PAGE

0MB No 0704-0 188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of
this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC
20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 2002 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING

Demonstration of Quality of Security Service Awareness for IPsec

6. AUTHOR(S) MIPR No. 00-E583

Evdoxia Spyropoulou, Timothy E. Levin and Cynthia E. Irvine

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Center for Information Systems Security Studies and Research (CISR) NPS-CS-02-005
Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
DARPA/ATO AGENCY REPORT NUMBER
CHATS Program
3701 North Fairfax Drive
Arlington, VA 22203-1714

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words.)

Quality of Security Service (QoSS) refers to the ability to provide security services according to user and system preferences, policies and
conditions. Thus, security can be managed as a responsive "service" for which quantitative measurement of service "efficiency" is
possible. We present our demonstration of how a specific underlying security mechanism, IPsec, can be modulated to provide different
levels for security in response to changing QoSS requirements.

14. SUBJECT TERMS 15. NUMBER OF
PAGES

KeyNote, IPsec, computer security, communications security, quality of service, security policy 33
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified Unclassified

NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

Demonstration of Quality of Security Service Awareness for IPsec

Evdoxia Spyropoulou Timothy Levin Cynthia Irvine

Naval Postgraduate School
Monterey, CA

1. Introduction
If a Quality of Service (QoS) dimension is supported, then applications and/or users can request or specify a level of
service for one or more attributes of this dimension, and the underlying QoS control mechanism should be capable of
entering into an agreement to deliver those services at the'requested levels.

Quality of Security Service (QoSS) refers to the ability to provide security services according to user and system
preferences and policies. This way security and security requests can be managed as a responsive "service" for which
quantitative measurement of service "efficiency" is possible. The enabling technology for both QoSS and a security-
adaptable infrastructure is variant security, or the ability of security mechanisms and services to allow the amount,
kind or degree of security to vary, within predefined ranges [1].

In previous work [2][3] we have described how variant security can be offered and presented to applications and users
in an organized manner. Two abstractions were introduced:

" an operational mode parameter, Network Mode, which represents the influence external conditions and network
status could have, on the security policy and security services applicable to the task: for example under certain
conditions, an administrator may be willing to accept more (or less) security for a given application. Example
values for this parameter are: normal, impacted, emergency.

"* a Security Level parameter, which represents the choices available to users for the security variables within the
value ranges that the policy permits for this Security Level. Example values for this parameter are: "high",
"medium", "low".

The selections for the Network Mode and Security Level parameters are mapped to detailed mechanism invocations
via a translation matrix.

As a proof of concept we want to demonstrate how an underlying specific security mechanism can be modulated to
provide different levels for security in response to QoSS requests from users. In the next paragraphs we present our
demonstration of QoSS awareness for IPsec. In the demo QoSS conditions are linked to IPsec, so that we can adjust
the kind of security services provided to applications according to QoSS "handles", like the network mode and/or the
security level.

In section 2 we provide some IPsec background and describe how QoSS notions can be linked to this security
mechanism. Section 3 gives a brief description of the demo's functionality. Section 4 discusses the IPsec's Security
Policy Database and how to put rules into it. In sections 5 and 6 we discuss Internet Key Exchange daemon's
configuration and policy issues. Section 7 presents the functionality of the QoSS management module. Display of
traffic data and of established security parameters is discussed in sections 8 and 9. Section 10 contains a detailed list of
demonstration steps and files.

We've included in two Appendixes some OpenBSD specific information we considered useful for reference purposes.
Appendix A contains installation guidelines and Appendix B information for setting up a Certificate Authority and
generating keys and certificates.

It should be noted that for our demo we use the IPsec implementation of OpenBSD version 2.9.

1

Demonstration of Quality of Security Service Awareness for IPsec

2. IPsec and QoSS
As described in [4] "IPsec provides security services at the IP layer by enabling a system to select required security
protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic keys required to
provide the requested services. IPsec can be used to protect one or more "paths" between a pair of hosts, between a pair
of security gateways, or between a security gateway and a host. [...]

"The set of security services that IPsec can provide includes access control, connectionless integrity, data origin
authentication, rejection of replayed packets (a form of partial sequence integrity), confidentiality (encryption), and
limited traffic flow confidentiality. Because these services are provided at the IP layer, they can be used by any higher
layer protocol."

IPsec provides traffic security "through the use of two traffic security protocols, the Authentication Header (AH) and
the Encapsulating Security Payload (ESP), and through the use of cryptographic key management procedures and
protocols. The set of IPsec protocols employed in any context, and the ways in which they are employed, will be
determined by the security and system requirements of users, applications, and/or sites/organizations.

"When these mechanisms are correctly implemented and deployed, they ought not to adversely affect users, hosts, and
other Internet components that do not employ these security mechanisms for protection of their traffic. These
mechanisms also are designed to be algorithm-independent. This modularity permits selection of different sets of
algorithms without affecting the other parts of the implementation. For example, different user communities may select
different sets of algorithms (creating cliques) if required." [4]

The IPsec mechanism provides services, including confidentiality, integrity and authenticity, through the establishment
of Security Associations (SA) among the entities that wish to communicate. The SA is a "simplex connection that
affords security services to the traffic carried by it" and it essentially is "a management construct used to enforce a
security policy in the IPsec environment" [4]. There is a set of parameters associated with each SA, which includes,
among others: SA lifetime, encryption and/or authentication algorithms and keys, and protocol mode
(tunnel/transport). The SAs can be generated manually, but that approach does not scale well. The Internet Key
Exchange (IKE) along with the Internet Security Association and Key Management Protocol (ISAKMP) address the
problem of establishing and maintaining SAs through the use of an automated daemon.

Information relevant to SAs and their establishment is stored in two databases in IPsec: the Security Policy Database
(SPD) and the Security Association Database (SAD). The SPD "specifies the policies that determine the disposition of
all IP traffic inbound or outbound" from a communicating entity. The SAD "contains parameters that are associated
with each active security association".

The IPsec protocols themselves do not include an approach for managing the policies that control which host is
allowed to establish SAs with another host and what kind of characteristics the SAs should have. We are using the
OpenBSD's implementation of IPsec. This implementation addresses the SA management problem by including a trust
management system, KeyNote, and providing an additional check in the IPsec processing: it makes sure that the SAs to
be created agree with a local security policy (that can be expressed in the trust management system's language)
[5][6][7].

When IPsec SAs are established between two entities wishing to communicate, they are used until their negotiated
lifetime expires (if the SAs are not for some reason violently interrupted/discarded). But the characteristics of the
negotiated SAs cannot respond to dynamic modifications of the environment's security requirements, for example they
cannot adapt to changes in threat conditions, critical time transmissions, and network congestion/traffic.

To have a QoSS aware IPsec, we enable the IKE daemon to negotiate SAs, and enable the Trust Management System
to enforce local policy for them, in accordance with the system's QoSS parameters (network mode, security level).
Also if there is a change in a QoSS parameter, currently active SAs must be renegotiated to conform to the current set
of security requirements (as expressed by the local policy).

In Figure 1 we can see the components for a QoSS aware IPsec, which will be described in detail in the following
paragraphs. The QoSS Management Module, which we have added, is responsible for fetching the current selections

2

Demonstration of Quality of Security Service Awareness for IPsec

for the network mode and the security level and updating the IKE daemon's configuration data and KeyNote's local
security policy. Furthermore it signals the IKE daemon to use from then on the new configuration data and local policy
for SA negotiations, to remove currently active SAs (if any) and to notify the peer's daemon that these SAs are no
longer valid, so that renegotiation of SAs can proceed [8].

User Space

,_Kem ~e. ...--

IP OutputRoutine I
T - -------

IPSec SA t:IEDeo
Processing Management

E KeyNote

IP Input SPD Dt

Routine

Figure 1: QoSS awareness for IPsec

3. Demo Overview
In our proof of concept demonstration, the IPsec processing for three specific applications varies in response to a
Security Level QoSS parameter. We display responsiveness to a system status change by adjusting the values of
security variables, like encryption algorithm used for ESP processing and authentication algorithm used for AH
processing [8].

We have three example applications in our system: finger, telnet and ping. In the paragraphs below we
describe our security policy requirements for each of them.

"* ping does not utilize any security services

" teelnet may use the confidentiality service provided by the ESP protocol of IPsec. One of the security attributes
for which we have choices is the encryption algorithm, it could be any of the: DES, 3DES, RC4, IDEA, CAST,
BLOWFISH, 3IDEA, or AES.

Our security policy could say that we can only utilize these algorithms: DES, 3DES, AES and a further refinement
in the policy, that takes into account the notion of network modes, could say:

-in Normal Mode: DES, 3DES, AES

-in Impacted Mode: no encryption, DES, 3DES

3

Demonstration of Quality of Security Service Awareness for IPsec

-in Emergency Mode: AES (in this case the range is degenerate).

So the system is in one of the above modes and the user/application could request any of the available by the mode
choices for the encryption algorithm. We could go ahead and do the mapping to Security Levels for each Network
Mode and we illustrate this for the Impacted Mode:

- Low Security Level in Impacted Mode: no encryption

- Medium Security Level in Impacted Mode: DES

- High Security Level in Impacted Mode: 3DES

finger may use the integrity service provided by the AH protocol of IPsec. One of the security attributes for
which we have choices is the authentication algorithm, it could be any of the: HMAC-MD5, HAAC-SHA, HMAC-
RIPE-MD, DES-MAC, or KPDK. So if our policy for the Impacted Mode says that available choices are: no
authentication, HMAC-MD5, HMAC-SHA, the security levels could be mapped as:

- Low Security Level in Impacted Mode: no authentication

- Medium Security Level in Impacted Mode: HMAC-MD5

- High Security Level in Impacted Mode: HMAC-SHA

So for the sake of simplicity we assume that our system is in Impacted Mode and we apply different IPsec processing
to the applications in response to the Security Level parameter, as seen in Table 1: we apply no IPsec processing to the
traffic of any of the applications when the Security Level is Low. For Medium security, finger traffic is
authenticated with HMAC-MD5 and we encrypt telnet traffic with DES. If we switch to High security, finger
traffic is authenticated with HMAC-SHA and we encrypt telnet traffic with 3DES.

Table 1: IPsec Processing for different security levels

ecuity Level LOW MEDIUM HIGH
Application __________ __________

Telnet No IPsec processing ESP processing with ESP processing with
DES 3DES

Finger No IPsec processing AH processing with AH processing with
HMAC-MD5 HMAC-SHA

Ping No IPsed processing No IPsec processing No IPsec processing

4. Getting Rules into the Security Policy Database
"Ultimately, a security association is a management construct used to enforce a security policy in the IPsec
environment. Thus an essential element of SA processing is an underlying Security Policy Database (SPD) that
specifies what services are to be offered to IP datagrams and in what fashion[.. .]

"The SPD must be consulted during the processing of all traffic (inbound and outbound), including non-IPsec traffic.
In order to support this, the SPD requires distinct entries for inbound and outbound traffic. An SPD must discriminate
among traffic that is afforded IPsec protection and traffic that is allowed to bypass IPsec. This applies to the IPsec
protection to be applied by a sender and to the IPsec protection that must be present at the receiver. For any outbound
or inbound datagram, three processing choices are possible: discard, bypass IPsec, or apply IPsec. The first choice
refers to traffic that is not allowed to exit the host, traverse the security gateway, or be delivered to an application at
all. The second choice refers to traffic that is allowed to pass without additional IPsec protection. The third choice

4

Demonstration of Quality of Security Service Awareness for IPsec

refers to traffic that is afforded IPsec protection, and for such traffic the SPD must specify the security services to be
provided, protocols to be employed, algorithms to be used, etc. [...]

"Specifically, every inbound or outbound packet is subject to processing by IPsec and the SPD must specify what
action will be taken in each case. Thus the administrative interface must allow the user (or system administrator) to
specify the security processing to be applied to any packet entering or exiting the system, on a packet by packet basis."
[4]

The SPD can be thought of as similar to a packet filter where the actions decided upon are the activation of SA
processes [9]. In OpenBSD it is implemented as an extension to the routing table (Figure 2). Changes to the SPD can
be made manually through the ipsecadm utility. Furthermore, the IKE daemon can cause modifications to the SPD.
In both cases the PFKEY API is used [10].

SImplemented as extension I. PFKEY .

to routing table KeYaManagement

Daemons

bs btD SA lProtocol Policy *birection

TCP ESP Require In
(UDP) AH Acquire Out

Permit
Deny

Figure 2: Security Policy Database in OpenBSD

Some details for the ipsecadm flow command of OpenBSD that manages the SPD can be found below:

"ipsecadri flow: Create a flow determining what security parameters a packet should have (input or output).
Allowed modifiers are: -src, -dst, -proto, -addr, -transport, -sport, -dport, -delete,
-in, -out, -deny, -srcid, -dstid, -srcidtype, -dstidtype, -use, -acquire, -
require, -dontacq, -permit, and -bypass. The netstat (1) command shows all specified flows.
Flows are directional, and the -in and -out modifiers are used to specify the direction. By default, flows are
assumed to apply to outgoing packets. The kernel will attempt to find an appropriate Security Association from those
already present (an SA that matches the destination address, if set, and the security protocol). If the destination address
is set to all zeroes (0.0.0.0) or left unspecified, the destination address from the packet will be used to locate an SA (the
source address is used for incoming flows). For incoming flows, the destination address (if specified) should point to
the expected source of the SA (the remote SA peer). If no such SA exists, key management daemons will be used to
generate them if -acquire or -require were used. If-acquire was used, traffic will be allowed out (or in) and
IPsec will be used when the relevant SAs have been established. If -require was used, traffic will not be allowed in
or out until it is protected by IPsec. If -dontacq was used, traffic will not be allowed in or out until it is protected by
IPsec, but key management will not be asked to provide such an SA. The -proto argument (by default set to esp)
will be used to determine what type of SA should be established. A bypass or permit flow is used to specify a flow

5

Demonstration of Quality of Security Service Awareness for IPsec

for which IPsec processing will be bypassed, i.e packets will/need not be processed by any SAs. For permit flows,
additional modifiers are restricted to: -addr, -transport, -sport, -dport, -in, -out, and -delete. A
deny flow is used to specify classes of packets that must be dropped (either on output or input) without further
processing. deny takes the same additional modifiers as bypass" [11].

In our demonstration we use the file vpn2 8_aha (Figure 3) to put the rules into the SPD. This script must be
executed on the initiator's side before traffic from the applications is generated, otherwise no IPsec processing will be
applied to that traffic. It establishes four flows:

"* One pair for telnet traffic, that mandates ESP IPsec processing for incoming and outgoing telnet packets.

"* One pair for finger traffic, that mandates AH IPsec processing for incoming and outgoing finger packets.

In both cases, traffic from these applications will not be allowed in or out until it is protected by IPsec.

For traffic of any other application to, be subject to IPsec processing, a similar pair of flows should be established.
Since no rule for ping is present, it will be allowed to bypass IPsec.

NOTE: In OpenBSD 2.9, it is not possible to apply different ESP processing to two applications (or different AH
processing to two applications). That is, if a pair of ESP SAs has already been established, they will be used for
subsequent traffic requiring ESP processing. This is due to unfinished code in OpenBSD development and it will be
addressed in future versions. That's why for the moment our demo displays different processing for two applications
only, one with ESP, the other with AH.

On the responder's side there is no need to initially load rules into the SPD. Once the SAs are negotiated and
established, rules are automatically put into the SPD.

NOTE: In [5] a similar behavior is described for the initiator's side. If this was accurate, then there would not be a
need to initially populate the SPD at the initiator. The policy expressed in KeyNote policy files should be enough to
trigger the negotiations. This approach is not yet implemented in OpenBSD, that's why it's necessary to execute a
script file, like that of Figure 3.

/bin/sh
#Set-up flows for the two specific hosts
#Use for defining applications FINGER and TELNET
ESP for TELNET
AH for FINGER
-dport for egress traffic
-sport for ingress traffic

Local and remote hosts
LOCAL HOST=a.b.c.d
REMOTEHOST=x.y.z.w

ipsecadm=/sbin/ipsecadm

Create the host-to-host flow

#egress flow for finger
$ipsecadm flow -dst $REMOTEHOST -proto ah \

-addr $LOCAL HOST 255.255.255.255 \
$REMOTE HOST 255.255.255.255 \
-transport tcp -dport 79 \
-src $LOCALHOST -out -require

#ingress flow for finger
$ipsecadm flow -dst $REMOTEHOST -proto ah \

-addr $REMOTE HOST 255.255.255.255 \
$LOCAL HOST 255.255.255.255 \
-transport tcp -sport 79 \

6

Demonstration of Quality of Security Service Awareness for IPsec

-src $REMOTEHOST -in -require

#egress flow for telnet
$ipsecadm flow -dst $REMOTE HOST -proto esp \

-addr $LOCAL HOST 255.255.255.255 \
$REMOTEHOST 255.255.255.255 \
-transport tcp -dport 23 \
-src $LOCALHOST -out -require

#ingress flow for telnet
$ipsecadm flow -dst $REMOTEHOST -proto esp \

-addr $REMOTE HOST 255.255.255.255 \
$LOCAL HOST 255.255.255.255 \
-transport tcp -sport 23 \
-src $REMOTEHOST -in -require

exit 0

Figure 3: Script file with rules for SPD - vpn28 ah a

By issuing the command

netstat -rn -f encap

we can observe the routing tables (-r option) and more specifically, the ones related to IPsec (-f encap option).
These are the rules that we have added to the SPD (Figure 4).

Routing tables
Encap:
Source Port Destination Port Proto SA(Address/Proto/Type/Direction)
w.x.y.z/32 23 a.b.c.d/32 0 6 w.x.y.z/50/require/in
w.x.y.z/32 79 a.b.c.d/32 0 6 w.x.y.z/51/require/in
a.b.c.d/32 0 w.x.y.z/32 23 6 w.x.y.z/50/require/out
a.b.c.d/32 0 w.x.y.z/32 79 6 w.x.y.z/51/require/out

Figure 4: Flows in output of netstat command

5. Configuring the IKE Daemon
The IKE daemon isa kmpd is the key exchange and SA negotiation mechanism for IPsec. It automatically manages
the exchange of cryptographic keys that would otherwise have to be manually managed with the ipsecadm utility.
isa kmpd daemon is used when two systems need to autonrafically setup a pair of Security Associations (SAs) for
securely communicating using IPsec. IKE operates in two stages:

Phase 1 (Main or Identity Protection Mode) - "the two IKE daemons establish a secure link between themselves, fully
authenticating each other and establishing key material for encrypting/authenticating future communications between
them. This step is typically only performed once for every pair of IKE daemons".

Phase 2 (Quick Mode) - "the two IKE daemon create the pair of SAs for the parties that wish to communicate using
IPsec. These parties may be the hosts the IKE daemons run on, a host and a network behind a firewall, or two networks
behind their respective firewalls. At this stage, the exact parameters of the SAs (e.g., algorithms to use, encapsulation
mode, lifetime) and the identities of the communicating parties (hosts, networks, etc.) are specified. The reason of
existence of Quick Mode is to allow for fast SA setup, once the more heavyweight Main Mode has been completed.
Generally, Quick Mode uses the key material derived from Main Mode to provide keys to the IPsec transforms to be
used. Alternatively, a new Diffie-Hellman computation may be performed (significantly slowing down the exchange,
but at the same time providing Perfect Forward Secrecy (PFS))" [12].

isakmpd. conf is the configuration file for the isakmpd daemon managing security association and key
management for the IPsec layer of the kernel's networking stack and it's typically placed in the /etc/isakmpd

7

Demonstration of Quality of Security Service Awareness for IPsec

directory [13]. The file is of a well known type of format called .INI style. This format consists of sections, each
beginning with a line looking like:

[Section name]

Between the brackets is the name of the section following this section header. Inside a section many tag/value pairs can
be stored, each one looking like:

Tag=Value

It should be noted that some parts of the IKE daemon's configuration are auto-generated. Some predefined section
names are recognized by the daemon, voiding the need to fully specify the Main Mode transforms and Quick Mode
suites, protocols and transforms in the i s a kmpd. con f file:

For Main Mode
(DES,BLF, 3DES, CAST}-(MD5, SHA}[-(DSSRSA_SIG)]

For Quick Mode
QM-{ESPAH}[- TRP]-{DES, 3DES, CAST, BLFAES)[- (MD5, SHA,RJPEMD}][-PFS]-SUITE

All auto-generated values can be overridden by manual entries by using the same section and tag names in the
configuration file.

For more details on what each tag name means, [13] and [9] should be consulted. Of special interest though is the
Default-Phase-2-Suites tag. This tag describes a list of Phase 2 suites that will be used when establishing dynamic SAs.
If left unspecified, QM-ESP-3DES-SHA-PFS-SUITE is used as the default. From this list the set of proposals for SAs
that the initiator's IKE daemon sends to the other daemon is formed.

In our QoSS demo we want a different list of Phase 2 suites to be proposed to the other IPsec node, for medium and
high security level (for low security level no IPsec processing is required by our policy). So we are using a predefined
set of alternate IKE configuration data and local security policies that describe the characteristics we want our SAs to
have for each security level and we make active the proper isakmpd. conf file through our QoSS module. The
different IKE configuration data that we are using can be seen in Figures 5 and 6.

The main difference of these files is at the Default-Phase-2-Suites tag. The detailed breakdown and description of the
suites is not necessary for the ESP suites used, since they are part of the auto-generated configuration. Only values
overriden are needed to be present. The AH suites we use though should be explicitly defined (auto-generated info
does not include them). Generally it is suggested as a good practice to fully describe the proposed suites in the
isakmpld. conf file, to be sure of the various values used.

#isakmpd. conf.medium

[General]
Listen-on= a.b.c.d
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120
Default-Phase-2-Suites= QM-ESP-DES-MD5-PFS-SUITE, QM-AH-MD5-PFS-SUITE

#set-up to work specifically with responder with new configuration style
[Phase 1]
w.x.y.z = Peer-w.x.y.z/a.b.c.d

[Peer- w.x.y.z/a.b.c.d]
Phase= 1
Address= w.x.y.z
Local-address= a.b.c.d
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

8

Demonstration of Quality of Security Service Awareness for IPsec

[Default-main-mode]
DOI= IPSEC
EXCHAINGETYPE= IDPROT
Transforms= 3DES-SHA

#t Quick mode protection suites
[QM-ESP-DES-MD5-PFS-SUITE]
Protocols= QM-ESP-DES-MD5-PFS

[QM-AH--MD5-PFS--SUITE]
Protocols= QM-AH-MD5--PFS

#t Quick mode protocols
[QM-ESP-DES-MD5--PFS]
PROTOCOL_10= IPSECES?
Transforms= QM-ESP-DES-MD5-PFS-XF

[QM-AH-MD5--PFS]
PROTOCOLID= IPSECAH
Transforms= QM-AH-MD5-PFS-XF

#t Quick mode transforms
[QM-ESP-DES-MD5-PFS-XF]
TRANSFORM_10= DES
ENCAPSULATIONMODE= TUNNEL
GROUPDESCRIPTION= MOD?_1024
AUTHENTICATIONALGORITHM= HMAC MD5
Life= LIFE_3600_SECS

[QM-AH-MD5-PFS-XF]
TRANSFORMID= MD5
ENCAPSULATIONMODE= TUNNEL
GROUPDESCRIPTION= MODP_1024
AUTHENTICATIONALGORITHM= HMAC MD5
Life= LIFE_3600_SECS

[LIFE_3600_SECS]
LIFE TYPE=_ SECONDS
LIFEDURATION= 3600,1800:7200

[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/c~erts/

,Private-key= /etc/isakmpd/private/initiator. key

Figure 5: isakinpd. conf on Initiator for medium security level

#isakmpd. conf.high

(General]
Listen-on= a.b.c.d
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120
Default-Phase-2-Suites= QM-ESP-3DES-SHA-PFS-SUITE, QM-AH-SHA-PFS-SUITE

#set-up to work specifically with responder with new configuration style
[Phase 1]
w.x.y. z= Peer-w.x.y.z/a.b.c.d

[Peer-w.x.y.z/a.b.c.d]

9

Demonstration of Quality of Security Service Awareness for IPsec

Phase= 1
Address= w.x.y.z
Local-address= a.b.c.d
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE TYPE= ID PROT
Transforms= 3DES-SHA

Quick mode protection suites
[QM-ESP-3DES-SHA-PFS-SUITE]
Protocols= QM-ESP-3DES-SHA-PFS

[QM-AH-SHA-PFS-SUITE]
Protocols= QM-AH-SHA-PFS

Quick mode protocols
[QM-ESP-3DES-SHA-PFS]

PROTOCOL ID= IPSEC ESP
Transforms= QM-ESP-3DES-SHA-PFS-XF

[QM-AH-SHA-PFS]
PROTOCOL ID= IPSEC AH
Transforms= QM-AH-SHA-PFS-XF

Quick mode transforms
[QM-ESP-3DES-SHA-PFS-XF]

TRANSFORM ID= 3DES
ENCAPSULATION MODE= TUNNEL
AUTHENTICATION ALGORITHM= HMAC SHA
GROUPDESCRIPTION= MODP-1024
Life= LIFE_3600_SECS

[QM-AH-SHA- PFS-XF]
TRANSFORM ID= SHA
ENCAPSULATION MODE= TUNNEL
GROUPDESCRIPTION= MODP 1024
AUTHENTICATIONALGORITHM= HMACSHA
Life= LIFE 3600 SECS

[LIFE_3600_SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 3600,1800:7200

[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/initiator.key

Figure 6: isakmpd. conf on Initiator for high security level

The configuration file for the IKE daemon of the responder can be seen in Figure 7, where descriptions of various
suites are kept for illustration purposes (it's not necessary to have all of them in the file).

[General]
Listen-on= w.C.y.z
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120

10

Demonstration of Quality of Security Service Awareness for IPsec

#setup to work specifically with initiator with new configuration style
[Phase 1)
a.b.c.d= Peer-a.b. c.d/w.x.y. z

#setup to work specifically with initiator with new configuration style
[Peer-a.b.c.d/w.x.y. zi
Phase= 1
Transport= udp
Local-address= w.x.y.z
Address= a.b.c.d
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE_-TYPE= IDPROT
Transforms= 3DES-SHA

[Default-quick-_mode)
DOI= IPSEC
EXCHANGETYPE= QUICKMODE
Suites= QM-ESP-DES-MD5-PFS-SUITE

Quick mode protection suites

DES
[QM-ESP-DES-SUITE]
Protocols= QM-ESP-DES

[QM-ESP-DES-PFS-SUITE]
Protocols= QM-ESP-DES-PFS

[QM-ESP-DES-MD5-SUITE]
Protocols= QM-ESP-DES-MD5

EQM-ESP-DES-MD5-PFS-SUITE]
Protocols= QM-ESP-DES-MD5-PFS

[QM-ESP-DES-SHA-SUITE]
Protocols= QM-ESP-DES-SHA

[QM-ESP-DES-SHA-PFS-SUITE]
Protocols= QM-ESP-DES-SHA-PFS

3DES
[QM-ESP-3DES-SHA-SUITE]
Protocols= QM-ESP-3DES-SHA

[QM-ESP-3DES-SHA-PFS-SUITE]
Protocols= QM-ESP-3DES-SHA-PFS

CAST
CQM-ESP-CAST-SHA-SUITE]
Protocols= QM-ESP-CAST-SHA

[QM-ESP-CAST-MD5-SUITE]
Protocols= QM-ESP-CAST-MD5

[QM-ESP-CAST-SHA-PFS-SUITEJ
Protocols= QM-ESP-CAST-SHA-PFS

[QM-ESP-CAST-MD5-PFS-SUITE]

Demonstration of Quality of Security Service Awareness for IPsec

Protocols= QM-ESP--CAST-MD5-PFS

AH
(QM-AI--MD5-SUITE]
Protocols= QM-AH-MD5

[QM-AH-MD5-PFS-SUITE]
Protocols= QM-AH-MD5-PFS

[QD4-AH-SHA-SUITE]
Protocols= QM-AH-SHA

[QM-AH-SI-A-PFS-SUITE]
Protocols= QM-AH-SHA-PFS

AH- + ESP
[QM-AH--MD5-ESP-DES-SUITE]
Protocols= QM-AI--MD5, QM-ESP-DES

[QDA-AH-MD5-ESP-DES--MD5-SUITE I
Protocols= QM-AH-MD5, QM-ESP-DES-MD5

[QM-ESP-DES-MD5--AH-MD5-SUITE]

Protocols= QM-ESP-DES-MD5, QM-AH-MD5

Quick mode protocols

DES
(QM-ES P-DES]
PROTOCOL_-ID= IPSEC ESP
Transforms= QM-ESP-DES-XF

[QM-ESP-DES-MD5]
PROTOCOL_10= IPSECESP
Transforms= QM-ESP-DES-MD5-XF

(QM-ESP-DES-MD5-PFS]
PROTOCOLID= - IPSECESP
Transforms= QM-ESP-DES--MD5-PFS-XF

[QM-E SP-DES -SHA]
PROTOCOL_10= IPSECESP
Transforms= QM-ESP-DES-SHA-XF

3DES
[QM-ESP-3DES-SHA]
PROTOCOLID= IPSECESP
Transformns= QM-ESP-3DES-SHA-XF

[QM-ESP-3DES-SHA-PFS]
PROTOCOL_10I= IPSECESP
Transforms= QM-ESP-3DES-SHA-PFS-XF

[QM-ESP-3DES-SHA-TRP]
PROTOCOL_10I= IPSECESP
Transforms= QM-ESP-3DES-SHA-TRP-XF

CAST
[QM-ESP-CAST-SHA]
PROTOCOL_10I= IPSECESP
Trans forms= QM-ESP-CAST-SHA-XF

[QM-ESP-CAST-MD5]

12

Demonstration of Quality of Security Service Awareness for IPsec

PROTOCOLID= IPSECESP
Trans forms= QM-ESP-CAST-MD5-XF

[QM-ESP-CAST-SHA-PFS]
PROTOCOL_10= IPSECESP
Transforms= QM-ESP-CAST-SHA-PFS--XF

[QM-ESP-CAST-MD5-PFS1
PROTOCOL_10= IPSECESP
Transforms= QM-ESP-CAST-MD5-PFS-XF

AN MD'5
[QM-AH-MD5]
PROTOCOL_10= IPSEC_-AN
Trans forms= QM-AH-MD5-XF

[QM-AN--MD5-PFS]
PROTOCOL_10= IPSECAH
Transformns= QM-AH-MD5-PFS-XF

AN SNA
[QM-AH-SHA]
PROTOCOL_10= IPSEC_-AH
Transforms= QM-AH-SHA--XF

[QM-AN-SHA-PFS]
PROTOCOL_10= IPSECAN
Transforms= QM-AH-SHA-PFS-XF

Quick mode transforms

ESP DES
[QM-ESP-DES-XF]
TRANSFORM_10= DES
ENCAPSULATIONMODE= TUNNEL
Life= LIFE_600_SECS

[QM-ESP-DES-MD5-XF]
TRANSFORM_10= DES
ENCAPSULATION MODE= TUNNEL
AUTHENTICATIONALGORITHM= HMAC -MD5
Life= LIFE_600_SECS

[QM-ESP-DES-MD5-PFS-XF]
TRANSFORM_10= DES
ENCAPSULATTIONMODE= TUNNEL
GROUPDESCRIPTION= MODP_1024
AUTHENTICATIONALGORITHM= HMACMD5
Life= LIFE_3600_SECS

[QM-ESP-DES-SHA-XF]
TRANSFORM ID= DES
ENCAPSULATION MODE= TUNNEL
AUTHENTICATIONALGORITHM= HMAC_-SEA
Life= LIFE_600_SECS

3DES
[QM-ESP-3DES-SHA-XF]
TRANSFORM_10= 3DES
ENCAPSULATIONMODE= TUNNEL
AUTHENTICATION-ALGORITHM= HMAC_-SHA
Life= LIFE_60_SECS

13

Demonstration of Quality of Security Service Awareness for IPsec

[QM-ESP-3DES--SHA-PFS-XFJ
TRANSFORMID= 3DES
ENCAPSULATIONMODE= TUNNEL
AUTHENTICATIONALGORITHM= H-MACSHA
GROUPDESCRIPTION= MODP_1024
Life= LIFE_3600_SECS

[QM-ESP-3DES-SHA-TRP-XF]
TRANSFORM 10= 3DES
ENCAPSULATION-MODE= TRANSPORT
AUTHENTICATIONALGORITHM= H-MACSHA
Life= LIFE_60_SECS

#CAST
[QM-ES P-CAST-SHA-XFJ
TRANFORM_10= CAST
ENCAPSULATIONMODE= TUNNEL

AUTHENTICATIONALGORITEM= EMACSEA
Life= LIFE_60_SECS

[QM-ESP-CAST--MD5--XF]
TRANFORM_1D= CAST
ENCAPSULATION MODE= TUNNEL
AUTHENTICATIONALGORITHM= HMACMD5
Life= LIFE_60_SECS

[QM-ESP-CAST-SHA-PFS-XF)
TRAN FORM_10= CAST

ENCAPSULATION-MODE= TUNNEL
AUTHENTICATIONALGORITHM= EMACSEA
GROUPDESCRIPTION= MODP_1024
Life= LIFE_60_SECS

[QM-ESP-CAST-MD5-PFS-XF]
TRANFORM_10= CAST
ENCAPSULATION-MODE= TUNNEL

AUTHENTICATIONALGORITEM= HMACMD5
GROUPDESCRIPTION= MODP_768
Life= LIFE_60_SECS

AH
[QM-AH-MD5-XF]
TRANSFORM_10= MD5
ENCAPSULAYTION MODE= TUNNEL
AUTHENTICATIONALGORITEM= HMAC MD5
Life= LIFE_60_SECS

[QM-AH-MD5-PFS-XF]
TRANSFORM_10= MD5
ENCAPSULATIONMODE= TUNNEL
GROUPOESCRIPTION= MODP_768

AUTHENTICATIONALGORITEM= HMAC MD5
Life= LIFE_3600_SECS

[QM-AH-SHA-XF]
TRANSFORM 10= SEA
ENCAPSULATION-MODE= TUNNEL
AUTHENTICATIONALGORITHM= HMACSEA
Life= LIFE_60_SECS

[QM-AH-SHA-PFS-XF]

TPJNSFORM_10= SEA
ENCAPSULATION MODE= TUNNEL

14

Demonstration of Quality of Security Service Awareness for IPsec

GROUP DESCRIPTION= MODP_1024
AUTHENTICATIONALGORITHM= HMAC-SHA
Life= LIFE 3600 SECS

[LIFE_30_SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 30,25:35

[LIFE 60 SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 60,45:120

[LIFE_180_SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 180,120:240

[LIFE_600_SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 600,450:720

[LIFE_3600_SECS]
LIFE TYPE= SECONDS
LIFEDURATION= 3600,1800:7200

[LIFE_1000_KB]
LIFE TYPE= KILOBYTES
LIFEDURATION= 1000,768:1536

[LIFE 32 MB]
LIFE TYPE= KILOBYTES
LIFEDURATION= 32768,16384:65536

[LIFE_4.5_GB]
LIFE TYPE= KILOBYTES
LIFEDURATION= 4608000,4096000:8192000

[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/responder. key

Figure 7: isakmpd. conf on Responder

A couple of observations for these configuration files:

Peers authenticate each other through a pre-shared secret. Certificates could also be used (see Appendix B for some
info). In that case the transform suite used for Phase 1 (Main Mode) should change to 3DES-SHA-RSASIG for
example, and the Authentication tag should be removed.

The lifetime of the Initiator's proposals is 1 hour. This way, issues like expiration handling and re-initiation of
negotiations from any of the two peers were not addressed. Further experimentation is needed.

6. Enforcing Policy with KeyNote Trust Management System
KeyNote, a trust management system [6], is used in OpenBSD for enforcing the local policy that controls which host is
allowed to establish SAs with another host and what kind of characteristics the SAs should have, whereas, the SPD is
used for selecting traffic that needs IPsec processing and possible peer negotiation. IKE is used for performing that
negotiation. When two IKE daemons negotiate for establishing an SA, the initiator sends across proposals for the SAs
he is willing to establish. As mentioned in [12] "IKE proposals are "suggestions" by the initiator of an exchange to the
responder as to what protocols and attributes should be used on a class of packets. For example, a given exchange may
ask for ESP with 3DES and MD5 and A11 with SHA1 (applied successively on the same packet), or just ESP with

15

Demonstration of Quality of Security Service Awareness for IPsec

Blowfish and RIPEMD-160. The responder examines the proposals and determines which of them are acceptable,
according to policy and any credentials. The goal of security policy for IKE is thus to determine, based on local policy
(provided in the i s akmpd. pol icy file), credentials provided during the IKE exchanges (or obtained through other
means), the SA attributes proposed during the exchange, and perhaps other (side-channel) information, whether a pair
of SAs should be installed in the system (in fact, whether both the IPsec SAs and the flows should be installed). For
each proposal suggested by or to the remote IKE daemon, the KeyNote system is consulted as to whether the proposal
is acceptable based on local policy and remote credentials (e.g., KeyNote credentials or X509 certificates provided by
the remote IKE daemon)".

The local policy is contained in the isakmpd.policy file, which is typically placed in the /etc/isakmpd
directory. isakrmpd. policy is simply a flat ascii file containing KeyNote policy assertions (more details on the
syntax of this file can be found in [12],[6]).

The responder selects a proposal, the first one from the list of proposals that are sent to him that conforms to his local
policy (as expressed in i s a kmpd. po 1 i cy). He sends this proposal back to the initiator. The initiator checks his own
i s a kmpd. po 1 icy, to make sure that the selected proposal indeed agrees with his local policy.

In our QoSS demo we want a different local policy to be enforced in the QoSS aware peer, which acts as the initiator,
for medium and high security level (for low security level we do not require any IPsec processing). As in the case of
i s a kmpd. con f, we are using a predefined set of alternate IKE local security policies that describe the characteristics
we want our SAs to have for each security level and we make active the proper isa kmpd. policy file through our
QoSS module.

The different local policy files we are using can be seen in Figures 8 and 9. The main difference of these files is that
the isakmpd. policy for medium security level requires DES as the encryption algorithm for telnet traffic and
MD5 as the authentication algorithm for finger, whilst isakmpd. policy for high security level requires 3DES
and SHA for the respective cases.

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase :mekmitasdigoat"
Conditions: appdomain == "IPsec policy" &&

(esppresent == "yes") &&
((localfilterport == "23") II (remote_filterport "23") &&
(espenc-alg == "des")

) II
(ah-present == "yes") &&

((local filterport == "79") II (remote_filterport == "79") &&
(ah-auth-alg == "hmac-md5")

"-> "true";

Figure 8: isakmpd. policy on Initiator for medium security level

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: appdomain == "IPsec policy" &&

(esppresent == "yes") &&
((local filterport == "23") II (remote filterport "23") &&
(espenc alg == "3des")

) Il
(ah_present == "yes") &&

((localfilterport == "79") II (remotefilterport == "79") &&
(ah-auth-alg == "hmac-sha")

"-> "true";

Figure 9: isakmpd.policy on Inititator for high security level

16

Demonstration of Quality of Security Service Awareness for IPsec

The local policy file for the responder can be seen in Figure 10. For SAs to be successfully established for any security
level of the initiator, the responder's policy should be broad enough to accept the different possible proposals. So this
IPsec node accepts both DES and 3DES as encryption algorithms and both MD5 and SHA as authentication
algorithms.

KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: "passphrase :mekmitasdigoat"
Conditions: appdomain == "IPsec policy" &&

(esppresent == "yes") &&
(local filter-port == "23") I1
(remotefilter-port == "23")) &&
(esp_enc_alg == "des") I1 (espenc_alg "3des")

) II
(ahpresent == "yes") &&
((local filter_port == "79") II (remotefilterport ="79") &&

(ahauthalg == "hmac-md5") I I (ah_auth_alg == "hmac-sha")
-> "true";

Figure 10: isakmpd. policy on Responder

7. Bringing it All Together: QoSS Management Module

The events that control is a kmpd consist of negotiation initiations from a remote party, user input via a FIFO or by
signals, up-calls from the kernel via a PF_KEY socket, and lastly by scheduled events triggered by timers running out
(Figure 11) [14]. From these methods, of special interest for our demo is the user input by signals or via a FIFO.

Timer scheduled isakmpd negotiation initiations

events event-driven < Remote peer
daemon

Upealls T Signals

(new SA
expired SA)

Figure 11: Controlling events for isakmpd

We may send signals to the IKE daemon. Currently two such signals are implemented:

"* SIGUSRI, which generate a report, with status information of the daemon

"* SIGHUP, which re-initializes isakrmpd.

isakmpd. conf is read when the IKE daemon is first started and configuration information is loaded into the
daemon's memory for use in generation of SA proposals. isakmpd will reread the configuration file when sent a
SIGHUP signal.

Similarly isakrnpd. policy is read when isakrmpd is first started, and every time it receives a SIGHUP signal.
The new policies read will be used for all new Phase 2 SAs established from that point on (even if the associated Phase
I SA was already established when the new policies were loaded). The policy change will not affect already
established Phase 2 SAs [12].

17

Demonstration of Quality of Security Service Awareness for IPsec

Soifwechange isakmpd.conf and/or isakmpd.policy filesandsenta
kill -HUP <PID of isakmpd process>
the daemon will reread these files and take into account from now on the new information contained in them. The
daemon's process ID is contained in /var/run/isakmpd, pid.

In order to control the daemon we can also send commands through a FIFO called isakrmpd. fifo, which can be
found in /var/run/isakmpd. f if o. The commands are one-letter codes followed by arguments [15]:

c connect Establish a connection with a peer
C configure Add or remove configuration entries.
D debug Change logging level for a debug class
r report Report status information of the daemon
t teardown Teardown a connection

The last command is of special importance for our demo to address the problem of stopping already established phase
2 SAs when the QoSS policy has changed. When we write to the FIFO

t <connection identifier>

the daemon removes the pair of SAs associated with the connection from the SA databases and it also notifies the peer
daemon that these SAs are no longer valid, so that he can also remove them from his databases. The use of this
command and especially the naming conventions for connection identifiers are not well documented. Through
experimentation we observed the following:

-the first pair of SAs established (for incoming and outgoing traffic) is described by "Connection-O"
-the second pair of SAs established is described by "Connecti6n- 1"

If the commands
t Connection-0
t Connection-i

are issued to the isakmpd FIFO and a SIGHUP is sent to the daemon, then for subsequent traffic:
-the third (chronologically) pair of SAs established is described by "Connection-i"
-the fourth pair of SAs established is described by "Connection-2"

Again after the FIFO commands
t Connection-i
t Connection-2

and a SIGHUP to the daemon
-the fifth (chronologically) pair of SAs established is described by "Connection-2"
-the sixth pair of SAs established is described by "Connection-3"

and so on.

The code for the QoSS Management Module can be seen in Figure 12. This sh shell script file gives us an interface
for changing security level and causing the necessary changes to the IPsec mechanism. The functionality of this
module has as follows:

A menu is continuously displayed on the screen, which prompts the user to select a security level.

When low security level is selected, if the IKE daemon is not running, it is not necessary to take any action, since our
system does not provide IPsec protection in low security level. If the daemon is running, then through the FIFO we tear
down existing connections, and through ipsecadm utility we make sure that all SAs and rules are removed from IPsec
databases.

When medium security level is selected, first of all we copy to isakmpd. conf the configuration data for medium
level (contained in isakmpd. conf .medium) and to isakmpd. policy the local policy for medium security level
(from isakmpd. policy. medium). Then all SAs and rules are removed from IPsec databases. Rules for the flows

18

Demonstration of Quality of Security Service Awareness for IPsec

are loaded to the SPD and then if the daemon was not running we start it. If it was already running, we tear down
existing connections through the FIFO (to make sure that the peer is notified) and we send a SIGHUP to the daemon to
force it to read the new configuration and policy data. Logistics for forming the correct connection identifier are kept.

Similarly when high security level is selected, first of all we copy to i s a kmpd. con f the configuration data for high
level (contained in i s a kmpd. con f .high) and to i s a kmpd. po 1 i cy the local policy for high security level (from
i s a kmpd. po 1 i cy. hi gh). The rest of the steps are similar to those for the medium level.

NOTE: it should be noted that our demo always assumes that there are two pair of SAs established, one for telnet
and one for finger traffic, so whenever there is a security level change, it tries to delete all of them. This assumes
that whenever we change mode, we then generate both telnet and f inger traffic, before changing again level. The
akward logistics for the connection index forced this partial handling. A more complete approach would be to actually
check how many SAs (through /kern/ipsec info, see next section) are currently established and tear down
connections accordingly.

s banner() # Creates a banner for User Menus

clear
echo date'
echo ""

echo
echo
echo " SECURITY LEVEL MENU
echo "_"
echo ""

s menu() # Displays the menu

echo
echo "\tPlease select Security Level:\t\t\t\t****************"
echo "\t\t\t\t\t\t\t\t*\t\t\t\t*"
echo "\t\t 1. LOW\t\t\t\t\t\t* SECURITY LEVEL:\t"$NETWORK MODE"\t*"
echo "\t\t 2. MEDIUM\t\t\t\t\t*\t\t\t\t*"
echo "\t\t 3.
echo "\t\t"
echo "\t\t 0. Cancel"
echo ""

echo "\tSelect by pressing a number and then ENTER

s low() # Calls Low things

if [$NETWORKMODE != "Low"
then

echo "changing mode to LOW"
NETWORK MODE="Low"
echo "Entered LOW actions"
if s daemon runs
then

echo "t Connection-"$CONN INDEX
echo "t Connection-"$CONN INDEX > /var/run/isakmpd.fifo
echo "t Connection-"$(($CONN INDEX+I))
echo "t Connection-"$(($CONNINDEX+l)) > /var/run/isakmpd.fifo

19

Demonstration of Quality of Security Service Awareness for IPsec

echo "...flushing current IPSec settings"
ipsecadm flush

fi
else

echo "System is already in LOW mode"
fi

s medium() # Calls Medium things

if [$NETWORK MODE != "Medium"
then

NETWORK MODE="Medium"
echo "Entered MEDIUM actions"
echo ""

echo "...fetching MEDIUM level configuration info"
cp /etc/isakmpd/isakmpd.conf.medium /etc/isakmpd/isakmpd.conf
cp /etc/isakmpd/isakmpd.policy.medium /etc/isakmpd/isakmpd.policy
echo "...flushing current IPSec settings"
ipsecadm flush
sh /root/vpn28 ah a
if s daemon-runs
then

echo "t Connection-"$CONN INDEX
echo "t Connection-"$CONN INDEX > /var/run/isakmpd.fifo
CONN INDEX=$(($CONN INDEX+I))
echo "t Connection-"$CONN INDEX
echo "t Connection-"$CONNINDEX > /var/run/isakmpd.fifo
echo "...rereading configuration info".
kill -HUP 'cat /var/run/isakmpd.pid"

else
echo "...starting automated keying daemon isakmpd"
isakmpd

fi
else

echo "System is already in MEDIUM mode"
fi

s_high() # Calls High things

if [$NETWORK MODE != "High" I
then

NETWORK MODE="High"
echo "Entered HIGH actions"
echo ""
echo "...fetching HIGH level configuration info"
cp /etc/isakmpd/isakmpd.conf.high /etc/isakmpd/isakmpd.conf
cp /etc/isakmpd/isakmpd.policy.high /etc/isakmpd/isakmpd.policy
echo "...flushing current IPSec settings"
ipsecadm flush
sh /root/vpn28 ah a
if s daemon-runs
then

echo "t Connection-"$CONN INDEX
echo "t Connection-"$CONN INDEX > /var/run/isakmpd.fifo
CONN INDEX=$(($CONN INDEX+l))
echo "t Connection-ý$CONN INDEX
echo "t Connection-"$CONN INDEX > /var/run/isakmpd.fifo

20

Demonstration of Quality of Security Service Awareness for IPsec

echo "...rereading configuration info"
kill -HUP 'cat /var/run/isakmpd.pid'

else
echo "...starting automated keying daemon isakmpd"
isakmpd

fi
else

echo "System is already in HIGH mode"
fi

s daemon runs() # returns 0 if isakmpd is running

ps -ax I grep isakmpd I grep -v grep > daemon search
if [-s daemon-search]
then

echo "...isakmpd is RUNNING"
return 0

else
echo "...NO isakmpd running"
return 1

fi

s cleanup() # prepare for exit

if s daemon-runs
then

echo "...killing automated keying daemon isakmpd"
kill 'cat /var/run/isakmpd.pid'
echo "...flushing current IPSec settings"
ipsecadm flush

fi
rm daemon search

MAIN

s banner
CONN INDEX=O

NETWORK MODE="None"
while true
do

smenu
read CHOICE
while ["$CHOICE" -lt "0" 1 I ["$CHOICE" -gt "3"]
do

echo ""

echo "\tPlease select a number between 0 and 3:
read CHOICE
if ["$CHOICE" =

then
s_cleanup
exit

fi
done

case $CHOICE in

21

Demonstration of Quality of Security Service Awareness for IPsec

1) s low ;;
2) s medium ;;
3) s high ;;
0) echo "\tSecurity Level selection was cancelled"

s_cleanup
break;;

*) echo "\tWrong selection. The program will terminate"
s_cleanup
break;;

esac
echo "Press ENTER to continue
read tttt
clear

done

Figure 12: QoSS management module - level28 fifo

8. Generating and Displaying Traffic
The negotiation for establishment of SAs begins when traffic, for which there are rules in the SPD requiring IPsec
processing, appears, but the appropriate SAs cannot be found in the SAD.

So in order to trigger the whole process, these commands can be issued at the initiator:

telnet w.x.y.z fortelnet traffic
finger root@w.x.y. z for finger traffic

We can observe traffic among the two peers by issuing the command below:

tcpdump -N -v host a.b.c.d and w.x.y.z

tcpdump prints the headers of the packets on a network interface that match a boolean expression [16], in our case
the packets exchanged among the two IPsec nodes. When no IPsec processing is applied, the tcpdump output can be
seen in Figure 13, where various info for the packets is visible, among them the application names.

10:24:49.807580 initiator.4850 > responder.telnet: S 1673683391:1673683391(0) win 16384 <mss
1460,nop,nop,sackOK,nop,wscale 0,nop,nop,timestamp 1750110177 0> (DF) [tos Oxl0]
10:24:49.808442 responder.telnet > initiator.4850: S 2761636766:2761636766(0) ack 1673683392 win
17376 <mss 1460,nop,nop,sackOK,nop,wscale 0,nop,nop,timestamp 1371743825 1750110177> (DF)
10:24:49.808911 initiator.4850 > responder.telnet: ack 1 win 17376 <nop,nop,timestamp
1750110177 1371743825> (DF) [tos OxlO]
10:24:49.847519 responder.telnet > initiator.4850: P 1:4(3) ack 1 win 17376 <nop,nop,timestamp
1371743825 1750110177> (DF) [tos OxlO]
10:24:49.848122 initiator.4850 > responder.telnet: ack 4 win 17376 <nop,nop,timestamp
1750110178 1371743825> (DF) [tos OxlO]
10:24:49.848340 initiator.4850 > responder.telnet: P 1:4(3) ack 4 win 17376 <nop,nop,timestamp
1750110178 1371743825> (DF) [tos OxlO]

10:24:56.281101 initiator.39402 > responder.finger: S 1810136654:1810136654(0) win 16384 <mss
1460,nop,nop,sackOK,nop,wscale 0,nop,nop,timestamp 1750110190 0> (DF)
10:24:56.281969 responder.finger > initiator.39402: S 2729467036:2729467036(0) ack 1810136655 win
17376 <mss 1460,nop,nop,sackOK,nop,wscale 0,nopnoptimestamp 1371743838 1750110190> (DF)
10:24:56.282450 initiator.39402 > responder.finger: ack 1 win 17376 <nop,nop,timestamp
1750110190 1371743838> (DF)
10:24:56.283221 initiator.39402 > responder.finger: P 1:5(4) ack 1 win 17376 <nop,nop,timestamp
1750110190 1371743838> (DF)
10:24:56.307217 responder.finger > initiator.39402: ack 5 win 17376 <nop,nop,timestamp
1371743838 1750110190> (DF)
10:24:56.307698 initiator.39402 > responder.finger: P 5:7(2) ack 1 win 17376 <nopnop,timestamp
1750110190 1371743838> (DF)

10:25:14.750969 initiator > responder: icmp: echo request

22

Demonstration of Quality of Security Service Awareness for IPsec

10:25:14.751128 responder > initiator: icmp: echo reply
10:25:15.752717 initiator > responder: icmp: echo request
10:25:15.752872 responder > initiator: icmp: echo reply

Figure 13: tcpdump output with no IPsec processing

When IPsec is used for the packets (in medium and high security levels), from the tcpdump output (Figure 14) we
can only tell whether it is an ESP or AH packet. Ping packets still go in clear, since our policy does not require any
IPsec processing for them.

10:26:06.888971 esp initiator > responder spi.Ox2AOA519A seq 1 len 100
10:26:09.346186 esp initiator > responder spi 0x2AOA519A seq 2 len 100
10:26:09.347727 esp responder > initiator spi 0x7A82B723 seq 1 len 100
10:26:09.348684 esp initiator > responder spi Ox2AOA519A seq 3 len 84
10:26:09.388378 esp responder > initiator spi 0x7A82B723 seq 2 len 92
10:26:09.430333 esp initiator > responder spi Ox2AOA519A seq 4 len 84
10:26:09.430728 esp initiator > responder spi Ox2AOA519A seq 5 len 92
10:26:09.431609 esp responder > initiator spi 0x7A82B723 seq 3 len 84
10:26:09.432186 esp responder > initiator spi 0x7A82B723 seq 4 len 108

10:26:15.790018 ah initiator > responder spi OxI65AAE30 seq 1 len 88
10:26:20.347206 ah initiator > responder spi OxI65AAE30 seq 2 len 88
10:26:20.348608 ah responder > initiator spi 0x493C9386 seq 1 len 88
10:26:20.349497 ah initiator > responder spi OxI65AAE30 seq 3 len 76
10:26:20.351389 ah initiator > responder spi OxI65AAE30 seq 4 len 80
10:26:20.375272 ah responder > initiator spi 0x493C9386 seq 2 len 76

10:26:24.733178 initiator > responder: icmp: echo request
10:26:24.733404 responder > initiator: icmp: echo reply
10:26:25.737265 initiator > responder: icmp: echo request
10:26:25.737510 responder > initiator: icmp: echo reply
10:26:26.746936 initiator > responder: icmp: echo request

Figure 14: tcpdump output with IPsec processing

A GUI network protocol analyzer, like Ethereal, could also bee used. Ethereal allows interactive browsing of
packet data from a live network. Like other protocol analyzers, its main window shows 3 views of a packet. It shows a
summary line, briefly describing what the packet is. A protocol tree is shown, which allows to drill down to exact
protocol or field of interest. Finally, a hex dump shows exactly what the packet looks like when it goes over the wire
[17]. When packets are captured certain filters can be used for selecting the traffic of interest. The Filters dialog
allows the creation and modification of filters. So we should create a new filter for capturing the traffic among the
hosts we are interested by defining as
Filter string: host <initiator-host-name> and <responder-host-name>

9. Displaying the Contents of Security Association Database

As mentioned in [4] "in each IPsec implementation there is a nominal Security Association Database, in which each
entry defines the parameters associated with one SA. Each SA has an entry in the SAD. For outbound processing,
entries are pointed to by entries in the SPD. Note that if an SPD entry does not currently point to an SA that is
appropriate for the packet, the implementation creates an appropriate SA (or SA Bundle) and links the SPD entry to the
SAD entry. For inbound processing, each entry in the SAD is indexed by a destination IP address, IPsec protocol type,
and SPI." An SAD entry would include the fields: Destination IP address, IPsec protocol (AH or ESP), Security
Parameter Index (SPI), Sequence counter, Sequence overflow flag, Anti-replay window info, AH type and info, ESP
type and info, Lifetime info, Tunnel/transport mode flags, Path MTU info (Figure 15).

23

Demonstration of Quality of Security Service Awareness for IPsec

SAD

Implemented a PFKEY

a hash f table in Kernel interface

SA identifier set for incoming policy matching

IP 1 IPSec PIn Seq. Seq. Flag Antireply AH type ESP type Lifetime IPSec Proto Path
jiProto I Counter II Overflow Window & info l & info ! info Mode MTU info

SA identifier set for outgoing poiicy matching

st IP • IPSec I "Seq. Seq.Fla' Antireplay AH type i ESP type Lifetime IPSec Proto Path
Proto Counter Overflow I1Window I& info 11 &info info Mode info

SA identfier tuple

II st IP IPSec SPI Se Seq.Flao I Antireplay AH type ESP type Lifetime IPSec Proto Path
S II Proto | I Counter Overflowj Window I & info & info I info I Mode It MTU info

Figure 15: Security Association Database in OpenBSD

In OpenBSD SAD entries can be set manually with the ipsecadm utility, or through automatic key exchange
daemons, like IKE daemon and Photuris. The SAD is referred to as TDB or TDB table throughout OpenBSD's IPsec
source code.

A list of all security associations in the kernel tables can be obtained via the kernfs file <ipsec> (typically in
</kern/ipsec>). In order to access this file, kernfs should first be mounted, through the command:
mount -t kernfs /kern /kern
This file is continually updated by the kernel and a listing of its typical contents (obtained through the command cat
/kern/ipsec) can be seen in Figure 16. The listing displays four SAs currently established and a description of
their characteristics.

Hashmask: 31, policy entries: 2
SPI 554d633b, Destination = a.b.c.d, Sproto = 51

Established 26 seconds ago
Source = w.x.y.z
Flags (00011082) = <tunneling,usedtunnel>
Crypto ID: 3
xform = <IPsec AH>

Authentication = <HMAC-MD5>
40 bytes processed by this SA
Last used 21 seconds ago
Expirations:

Hard expiration(l) in 3574 seconds
Soft expiration(l) in 3214 seconds

SPI 40329317, Destination = a.b.c.d, Sproto = 50
Established 156 seconds ago
Source = w.x.y.z

24

Demonstration of Quality of Security Service Awareness for IPsec

Flags (00011082) = <tunneling,usedtunnel>
Crypto ID: 1
xform = <IPsec ESP>

Encryption = <DES>
Authentication = <HMAC-MD5>

200 bytes processed by this SA
Last used 82 seconds ago
Expirations:

Hard expiration(l) in 3444 seconds
Soft expiration(l) in 3084 seconds

SPI = 297c9f16, Destination = w.x.y.z, Sproto = 51
Established 26 seconds ago
Source = a.b.c.d
Flags (00001082) = <tunneling>
Crypto ID: 4
xform = <IPsec AH>

Authentication = <HMAC-MD5>
72 bytes processed by this SA
Last used 21 seconds ago
Expirations:

Hard expiration(l) in 3574 seconds
Soft expiration(l) in 3214 seconds

SPI = f5e7af83, Destination = w.x.y.z, Sproto = 50
Established 156 seconds ago
Source = a.b.c.d
Flags (00001082) = <tunneling>
Crypto ID: 2
xform = <IPsec ESP>

Encryption = <DES>
Authentication = <HMAC-MD5>

360 bytes processed by this SA
Last used 82 seconds ago
Expirations:

Hard expiration(l) in 3444 seconds
Soft expiration(l) in 3084 seconds

Figure 16: SAs in /kern/ipsec

The script program of Figure 18 parses the /kern/ipsec file and displays information for current SAs in a more
compact format as can be seen below (Figure 17).

* SAs currently used and their ALGORITHMS *

TIME: 10:21:57
SA# IPsec-Protocol Destination SPI Algorithm

TIME: 10:21:59
SA# IPsec-Protocol Destination SPI Algorithm

* SAs currently used and their ALGORITHMS *

TIME: 10:22:11
SA# IPsec-Protocol Destination SPI Algorithm

25

Demonstration of Quality of Security Service Awareness for IPsec

I. ESP a.b.c.d, 248c0d8f, DES
2. ESP w.x.y.z, 8c59e724, DES

TIME: 10:22:13
SA# IPsec-Protocol Destination SPI Algorithm

I. ESP a.b.c.d, 248c0d8f, DES
2. ESP w.x.y.z, 8c59e724, DES

* SAs currently used and their ALGORITHMS *

TIME: 10:22:25
SA# IPsec-Protocol Destination SPI Algorithm

1. ESP a.b.c.d, 248c0d8f, DES
2. ESP w.x.y.z, 8c59e724, DES
3. AH w.x.y.z, 2efa696c, MD5
4. AH a.b.c.d, 5b78fc88, MD5

TIME: 10:22:27
SA# IPsec-Protocol Destination SPI Algorithm

1. ESP a.b.c.d, 248c0d8f, DES
2. ESP w.x.y.z, 8c59e724, DES
3. AH w.x.y.z, 2efa696c, MD5
4. AH a.b.c.d, 5b78fc88, MD5

Figure 17: Output from SA display script

More specifically the main routine every 2 seconds generates a copy file of /ke rn/ips e c (since we cannot process
directly the kernfs file), and calls an awk routine to process it. The output screen is cleared every 3d time the routine
is called, soup to two successive "instances" of /kern/ipsec are displayed on the same screen.

The awk routine parses the file with the copied contents of /kern/ipsec, searching for specific info for each SA,
like: SPI of SA, Destination IP of SA, IPsec protocol, and algorithm. It performs the search, based on the fact that the
kernel output has a standard format, so certain info appears in the same position within an SA description:

We have defined in our awk routine that a field is a sequence of characters separated by the next one by a space or a
newline.
A line like the one below

Hashmask: x, policy entries: y

is always part of the first SA description in the kernel output, therefore the first SA description has the above extra 4
fields. So, an ESP SA description consists of 54 fields, if it is the first in the kernel output, and the IPsec protocol
information will appear on the 13'h field and the algorithm in the 340h for example. For a subsequent ESP SA
description there is a total of 50 fields, with the protocol information appearing on the 9th field and the algorithm in
the 30th. So depending on the total number of fields in the SA description, we search on the proper position for the
info of interest (Figure 18).

a banner() # Creates a banner for /ipsec/kern output

echo **'

echo "* SAs currently used and their ALGORITHMS
echo ***

26

Demonstration of Quality of Security Service Awareness for IPsec

echo ""

awk routine() # Processes and displays /ipsec/kern output

/usr/bin/awk
BEGIN { FS = "[\t]+"; RS .

print "SA#. "\t" "IPsec-Protocol" "\t" "Destination" "\t" "SPI" "\t\t" "Algorithm"
print "----------------------------------

if ((NF == 54) 1I (NF == 51)

print NR "." .\t" testProto($13) "\t" $10 "\t" $7 "\t" testAlgorithm($34)
I
if ((NF == 50) II (NF == 47)

print NR "." "\t" testProto($9) "\t" $6 "\t" $3 "\t" testAlgorithm($30)

function testProto(inProto, outProto)

if (inProto == "50\n")

outProto = " ESP"

else

if (inProto == "51\n")

outProto = " AH

return outProto

function testAlgorithm(inAlgorithm, outAlgorithm)

if (inAlgorithm == "<3DES>\n")

outAlgorithm = "3DES"

else

if (inAlgorithm == "<HMAC-SHAI>\n")

outAlgorithm = "SHAl"

else

if (inAlgorithm == "<DES>\n")

outAlgorithm = "DES"

else

if (inAlgorithm--- "<HMAC-MDS>\n")

outAlgorithm = "MD5"

27

Demonstration of Quality of Security Service Awareness for IPsec

return outAlgorithm

/root/textSA

MAIN

a banner
i=1
while true
do

if [$i == 3 1
then

a banner
i-I

fi

cat /kern/ipsec > /root/text SA
echo 'date "+TIME: %H:%M:%S"'
awk routine
echo ""

sleep 2
i=$ (($i+l))

done

Figure 18: SA display script - awkSA

10. Comprehensive Sequence of Demonstration Steps
The necessary files on each peer are:

Initiator:

"• The file with the rules for the SPD in /root: vpn28 ah a
"* The QoSS management module in /root: level28_fifo
"* The configuration and policy files in /etc/isakmpd: isakmpd.conf.medium

isakmpd.conf.high
isakrnpd.policy.medium
isakmpd.policy.high

Responder:

"* The SA display script in /root: awkSA
"• The configuration and policy files in /etc/isakmpd: isakmpd.conf

isakmpd.policy

The necessary actions on each peer are:

Responder:

"• Mount kernfs:
mount -t kernfs /kern /kern

"• Run the SA display script on a window:
sh awk SA

"• Start the IKE daemon (preferably in debug mode) in another window:
isakmpd -d -DA=99

"• Run tcpdump on a third window:

28

Demonstration of Quality of Security Service Awareness for IPsec

tcpdump -N -v host a.b.c.d and w.x.y.z
or
Run the Ethereal network analyzer
ethereal

Initiator

" Run the QoSS management module on a window:
sh level28 fifo

" Generate traffic on other windows:
telnet w.x.y.z
finger root@w.x.y.z

11. References
[1] Irvine, C. and Levin, T., "Quality of Security Service", Proc. of New Security Paradigms Workshop 2000, Cork,

Ireland, September 2000, pp. 91-99
[2] Irvine, C. and Levin, T., "A Note on Mapping User-Oriented Security Policies to Complex Mechanisms and

Services", Technical Report NPS-CS-99-08, Naval Postgraduate School, Monterey, CA, June 1999.
[3] Spyropoulou, E., Levin, T., and Irvine, C., "Calculating Costs for Quality of Security Service", Proc. of the

Computer Security Applications Conference, New Orleans, LA, December 2000, pp. 334-343.
[4] Kent. S. and Atkinson, R., "Security Architecture for the Internet Protocol", Internet RFC 2401, Internet

Engineering Task Force, November 1998.
[5] Blaze, M., Ioannidis, J. and Keromytis, A.D., "Trust Management for IPSec", Proc. of the Internet Society

Symposium on Network and Distributed Systems Security 2001, San Diego, CA, February 2001, pp. 139-151.
[6] Blaze, M., Feigenbaum, J., Ioannidis, J. and Keromytis, A.D., "The KeyNote Trust Management System Version

2", Internet RFC 2704, Internet Engineering Task Force, September 1999.
[7] Irvine, C., Levin, T., Spyropoulou, E., and Allen, B., "Security as a Dimension of Quality of Service in Active

Service Environments", Proc. of 3Yd Annual International Workshop on Active Middleware Services, San
Francisco, August 2001

[8] Spyropoulou, E., Agar, C., Levin, T., and Irvine, C., "IPsec Modulation for Quality of Security Service", Technical
Report NPS-CS-02-01, Naval Postgraduate School, Monterey, CA, January 2002.

[9] Using IPsec (Internet Security Protocol), OpenBSD Frequently Asked Questions,
http://www.openbsd.org/fag/fag 13.html, October 2001

[10] McDonald, D., Metz, C., Phan, B., "PFKEY Key Management API, Version 2", Internet RFC 2367, Internet
Engineering Task Force, July 1998

[11] ipsecadm(8), OpenBSD System Manager's Manual, http://www.openbsd.org/cg-bin/man.cgi, August 1997
[12] isakmpd.policy(5), OpenBSD Programmer's Manual, http://www.openbsd.org/cg-bin/man.cgi, October 1998
[13] isakmpd.conf(5), OpenBSD Programmer's Manual, http://www.openbsd.org/cg-bin/man.cgi, October 1998
[14] isakmpd(8), OpenBSD System Manager's Manual, http://www.openbsd.org/cg-bin/man.cgi, July 1998
[15] OpenBSD: DESIGN-NOTES, http://www.openbsd.org/cgi-bin/cvsweb/src/sbin/isakmpd/DESIGN-NOTES, June

2001
[16] tcpdump(8), OpenBSD System Manager's Manual, http://www.openbsd.org/cg-bin/man.cgi, July 1998
[17] The Ethereal Network Analyzer, http://www.openbsd.org/cgi-bin/cvsweb/ports/net/ethereal/,

http://www-ethereal.com/

29

Demonstration of Quality of Security Service Awareness for IPsec

APPENDIX A

Guidelines for installing OpenBSD 2.9 -stable with an X-Windows GUI

(starting from OpenBSD 2.8 CD)

A. INSTALL OpenBSD 2.8 from the CD
Follow guidelines on the CD label.
Make sure you allocate sufficient space to /usr, /home partitions (>1.5G for each).
Configure the network connection as well.

B. AFTERBOOT steps
1) check all applicable steps described in the afterboot man page
2) make sure that you run the hostname command
3) in /etc/sysctl. conf make sure that the IPsec protocols are enabled. The lines below should be uncommented:
net.inet.esp.enable = 1
net.inet.ah.enable = 1

C. COPY SOURCE TREE FROM CD
1) if it doesn't exist, create directory where cdrom will be mounted
mkdir -p /cdrom
2) insert OpenBSD CD 1
3) mount the cdrom device
mount -t cd9660 /dev/cd0a /cdrom
4) go to the directory where the source tree will be created
cd /usr/src
5) untar and unzip source file
tar xvfz /cdrom/src.tar.gz

D. UPDATE SOURCE from CVS TO 2.9-stable
Commands below given for csh
1) set method for accessing the anonymous CVS server
setenv CVS RSH /usr/bin/ssh
2) set the anonymous CVS server
setenv CVSROOT anoncvs@anoncvs5.usa.openbsd.org:/cvs

or anoncvs@anoncvsl . ca.openbsd.org:/cvs
(or any other anonCVS server that responds at the moment. For a complete list, check
http://www.openbsd.org/anoncvs.html. Make sure that the server supports ssh.)
3) setenv CVS IGNOREREMOTEROOT yes
4)cd /usr/src
5)cvs -t -d $CVSROOT up -rOPENBSD_2_9 -Pd
and wait for it to finish downloading.

E. UPDATE X1I - part I
(OpenBSD CD 1 should still be mounted from steps C. 1-3, otherwise repeat them)
I) cd /cdrom/2.8/packages/i386
2) install two necessary packages
pkg_add -v tcl-8.3.2.tgz
pkgadd -v tk-8.3.2.tgz

30

Demonstration of Quality of Security Service Awareness for IPsec

3) cd /home
It is suggested to install X1I source code to /home partition for space reasons.
4)umount /cdrom
5) insert and mount OpenBSD CD 2
mount -t cd9660 /dev/cd0a /cdrom
6) untar and unzip Xl I source file
tar xvfz /cdrom/Xll.tar.gz

F. UPDATE /etc/group
1) In /etc/group add the line
auth:*: 11:

G. CREATE LINK for object code directory
It is suggested that the object code for source code in /us r /s rc is placed in /home partition for space reasons.
1) cd /home
2)mkdir obj
3)chmod g+w /home/obj
4)cd /usr
5)rm -rf /usr/obj
6)ln -s /home/obj /usr/obj

H. REBUILD KERNEL
1) cd /usr/src/sys/arch/i386/conf
2) cp GENERIC OLDGENERIC
Steps 3-5 are for updating the config utility
3) cd /usr/src/usr.sbin/config
4)make clean && make depend && make
5)make install
6)cd .. /../sys/arch/i386/conf
7) /usr/sbin/config GENERIC
8)cd . ./compile/GENERIC
9)make clean && make depend && make
This step takes about 1 hour.

I. REBOOT WITH NEW KERNEL
l)cp /bsd /bsd.old
2) cp bsd /bsd
3) reboot

J. REBUILD BINARIES
1) cd /usr/src
2) rm -r /usr/obj/* Oust in case)
3)make obj && make build
It's better to make this step right before leaving for the day.. .it takes from 6 to 12 hours depending on the machine.

K. UPDATE X11 - part II
1)cd /home/Xll
2) environment variables should be set for CVS update, repeat steps D. 1-3

31

Demonstration of Quality of Security Service Awareness for IPsec

3) cvs -t up -PAd
and wait for it to update Xl I source.

L. UPDATE /etc and MAKEDEV
/etc files need updates for X1I to work properly. Step 1 creates in /n updated /etc files, so current /etc files can
be compared in detail to them (for example with diff -ru /etc/ /n/etc/ 2>&l I more) and manually
modified.
Steps 2-4 describe the necessary changes that came up from such a procedure.
I) cd /usr/src/etc && make distribution-etc-root-var DESTDIR=/n
2) in /etc/fbtab change line
'/dev/ttyCO 0600 /dev/console
to
/dev/ttyC0 0600 /dev/console: /dev/wskbd0: /dev/wsmouse0
3) in /etc/sysctl. conf change
machdep. allowaperture=2
4) in /etc/ttys under the line
ttyC7 "/usr/libexec/getty Pc" vt220 off secure
add the lines
ttyC8 "/usr/libexec/getty Pc" vt220 off secure
ttyC9 "/usr/libexec/getty Pc" vt220 off secure
ttyCa "/usr/libexec/getty Pc" vt220 off secure
ttyCb "/usr/libexec/getty Pc" vt220 off secure
5) update MAKEDEV
cp /usr/src/etc/etc.i386/MAKEDEV /dev/MAKEDEV
6) /dev/MAKEDEV all
7) reboot

K. UPDATE X II - part III
It is suggested that the object code for X11 is built in a different directory than that of object code for /usr/src
source
I)cd /var/Xll && mv xdm xdm-
2) test -d /home/objXll && mv /home/objXlI /home/objXll- &&

rm -rf /home/obj_Xll-
3)mkdir -p /home/objXll
4)ccd /home/obj_Xll
5)lndir /home/Xll && nice make DESTDIR=/ build
this will take a while...
6) run the utility to setup X1I
/usr/XllR6/bin/XF86Setup
You should know the type of your display card.
For the mouse, you should select as
Protocol: wsmouse
Device: /dev/wsmouse

and reboot...!

32

Demonstration of Quality of Security Service Awareness for IPsec

APPENDIX B

Certificate Authority Set-up and Generation of Keys and Certificates

Assume two hosts, hostA and hostB. hostA will play the role of the Certificate Authority.

A. Create CA key and certificate on host A
1) openssi genrsa -out /etc/ssl/private/ca.key 1024
2) openssi req -new -key /etc/ssi/private/ca.key

-out /etc/ssl/private/ca.csr
Here input Common Name: CISR_-CA

.3) openssl x509 -req -days 365 -in /etc/ssl/private/ca.csr
-signkey /etc/ssl/private/ca. key
-out /etc/ssl/ca.crt

Here input subject =/CN=CISR_-CA
4) cp /etc/ssl/ca.crt /etc/isakmpd/ca/.

B. Create host A key and root~c~host A certificate on host A:
5) openssi genrsa -out /etc/i~sakmpd/private/hostA.key 1024
6) openssi req -new -key /etc/isakmpd/private/host_-A.key

-out /etc/isakmpd/private/root .hostA. csr
Here input Common Name: root@host-7A.domain

7) openssl x509 -req -days 365 -in /etc/isakmpd/private/root.hostA.csr
-CA /etc/ssi/ca.crt
-CAkey /etc/ssl/private/ca. key -CAcreateserial
-out /etc/isakmpd/private/root.hostA.crt

Here input sub] ect /CN= root@host -A.domain
8) certpatch -t ufqdn -i root@host A.domain -k /etc/ssl/private/ca.key

/etc/isakxnpd/private/root hostA. crt
/etc/isakmpd/private/root .hostA. crt

C. Create host B key and root(a-)host B certificate on host A
9) openssi qenrsa -out /etc/isakmpd/private/host -B.key 1024
10) openssl req -new -key /etc/isakmpd/private/hostB.key

-out /etc/isakmpd/private/root .hostB. csr
Here input Common Name: root@host_-B.domain -

11) openssl x509 -req -days 365 -in /etc/isak'mpd/private/root.hostB.csr
-CA /etc/ssl/ca.crt
-CAkey /etc/ssl/private/ca. key -CAcreateserial
-out /etc/isakmpd/private/root.hostB. crt

Here input subjectPVCN= root@host -B.domain
12) certpatch -t ufqdn -i root@hostB.doinain -k /etc/ssl/private/ca-key

/etc/isakmpd/private/root .host -B. crt
/etc/isakmpd/private/root .host B. crt

13) Put on afloppy the files /etc/isakinpd/ca/ca.crt
/etc/isakinpd/private/root.hostB.crt
/etc/isakinpd/private/hostB. key

D. Transfer key and certificate on host B
14) From the floppy copy the files

ca.crt to /etc/isakmPd/ca/ca.crt
root.host_-B.crI t to /etc/isakmpd/private/root.hostB.crt

hostB.key to /etc/isakinpd/private/hostB.key

33

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 013 2
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5138

4. Dr. Douglas Maughan
Defense Advanced Research Projects Agency
Advanced Technology Office
3701 North Fairfax Drive
Arlington, VA 22203-1714

5. Dr. Cynthia E. Irvine 10
Code CS/Ic
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

6. Evdoxia Spyropoulou 2
Eirinis 49-51
153 41, Agia Paraskevi
Athens
Greece

7. Timothy E. Levin 2
Code CS/Lt
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5118

